Video: Was bedeutet es, wenn die Domäne nur reelle Zahlen ist?
2024 Autor: Miles Stephen | [email protected]. Zuletzt bearbeitet: 2023-12-15 23:32
Die Domain von ein Radikalfunktion ist irgendein x-Wert, für den der Radikand (der Wert unter dem Wurzelzeichen) nicht negativ ist. Dass meint x + 5 0, also x ≧ −5. Da die Quadratwurzel immer positiv oder 0 sein muss,. Die Domain sind alle reellen Zahlen x mit x ≧ −5, und der Bereich ist alle reellen Zahlen f(x) mit f(x) ≧ −2.
Warum ist der Bereich hier nur reelle Zahlen?
Domain ist alle reellen Zahlen außer 0. Da die Division durch 0 nicht definiert ist, kann (x-3) nicht 0 sein und x kann nicht 3 sein. Domain ist alle reellen Zahlen außer 3. Da die Quadratwurzel von any Nummer kleiner als 0 ist undefiniert, (x+5) muss gleich oder größer als null sein.
Anschließend stellt sich die Frage, was alle reellen Zahlen bedeuten. In der Mathematik, a reelle Zahl ist ein Wert einer kontinuierlichen Größe, der eine Distanz entlang einer Linie darstellen kann. Die reale Nummern enthalten alle die rationale Zahlen , wie die ganze Zahl −5 und der Bruch 4/3, und alle das irrationale Zahlen , wie 2 (1.41421356, die Quadratwurzel von 2, eine irrationale algebraische Nummer ).
Wie können Sie hierin wissen, ob eine Domäne nur aus reellen Zahlen besteht?
Da der Absolutwert jedoch als Abstand von 0 definiert ist, kann die Ausgabe nur größer oder gleich 0 sein. Für die quadratische Funktion f(x)=x2 f (x) = x 2 gilt Domain sind alle reellen Zahlen da die horizontale Ausdehnung des Graphen das Ganze ist reelle Zahl Leitung.
Was bedeutet es, die Domain einzuschränken?
Einschränkungen An Domain Zum Beispiel die Domain von f (x) = 2x + 5 ist, da f (x) für alle reellen Zahlen x definiert ist; das heißt, wir können f (x) für alle reellen Zahlen x finden. Zum Beispiel die Domain von f (x) = is, da wir aus einer negativen Zahl nicht die Quadratwurzel ziehen können. Die Domain von f (x) = ist.
Empfohlen:
Was sind reelle und natürliche Zahlen?
Die reellen Zahlen umfassen natürliche Zahlen oder zählende Zahlen, ganze Zahlen, ganze Zahlen, rationale Zahlen (Brüche und sich wiederholende oder abschließende Dezimalzahlen) und irrationale Zahlen. Die Menge der reellen Zahlen sind alle Zahlen, die eine Position auf der Zahlengeraden haben. Zahlenmengen. Natürliche Zahlen1, 2, 3,
Wie ist das Teilen von rationalen Zahlen wie das Teilen von ganzen Zahlen?
Multiplizieren Sie einfach die absoluten Werte und machen Sie die Antwort negativ. Wenn Sie zwei ganze Zahlen mit gleichem Vorzeichen dividieren, ist das Ergebnis immer positiv. Teilen Sie einfach die absoluten Werte und machen Sie die Antwort positiv. Wenn Sie zwei ganze Zahlen mit unterschiedlichen Vorzeichen teilen, ist das Ergebnis immer negativ
Welche Arten von Zahlen bilden die Menge der Zahlen, die als reelle Zahlen bezeichnet werden?
Reelle Zahlenmengen (positive ganze Zahlen) oder die ganzen Zahlen {0, 1, 2, 3,} (die nicht negativen ganzen Zahlen). Mathematiker verwenden in beiden Fällen den Begriff „natürlich“
Was sind natürliche Zahlen, ganze Zahlen, ganze Zahlen und rationale Zahlen?
Reelle Zahlen werden hauptsächlich in rationale und irrationale Zahlen eingeteilt. Rationale Zahlen umfassen alle ganzen Zahlen und Brüche. Alle negativen ganzen und ganzen Zahlen bilden die Menge der ganzen Zahlen. Ganze Zahlen bestehen aus allen natürlichen Zahlen und Null
Wann würde die Domäne alle reellen Zahlen sein?
Domäne sind alle reellen Zahlen außer 0. Da die Division durch 0 undefiniert ist, kann (x-3) nicht 0 sein und x kann nicht 3 sein. Domänen sind alle reellen Zahlen außer 3. Da die Quadratwurzel jeder Zahl kleiner als 0 undefiniert ist , (x+5) muss gleich oder größer Null sein